Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 333: 122072, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331579

RESUMO

Microplastic (MP) pollution is ubiquitous in the environment presenting a global problem for both scientists and the general public. One of the major pathways of MPs entering the natural environment is through wastewater treatment plants (WWTPs). Once MPs reach the natural environment, they are posing threat to aquatic ecosystems and public health. The aim of this study is to investigate the concentration, morphology, and composition of MPs in different treatment units of a WWTP. Sampling included different points across WWTP in the water and sludge lines. Pre-treatment of the samples consists of advanced Fenton oxidation, and alkaline and enzymatic digestion followed by density separation. Once the particles were isolated, their morphology and size were studied using a stereoscopic and optical microscope followed by final confirmation with ATR-FTIR and micro-FTIR spectroscopy. Microplastic particle concentrations exhibit significant reductions as water undergoes treatment in the WWTP. For summer sampling, concentrations decreased from 351 MP/L (influent) to 35 MP/L (primary clarifier), 32 MP/L (biological reactor), and 13 MP/L (2.3 MP/L) (secondary clarifier). Similarly, winter sampling showed reductions from 403 MP/L (influent) to 159 MP/L (primary clarifier), 178 MP/L (biological reactor), and 26 MP/L (5.6 MP/L) (secondary clarifier). Removal efficiency of WWTP is high and exceeds 96%. The most abundant morphology is fibers followed by fragments and films. Polymers such as PE, synthetic cellulose, PP, PVC, PE-PP, PEEA, PA, acrylamide, and PES are widely detected in different units of WWTP. The number of MPs that are avoided from being emitted into the environment through direct water discharge was estimated to be 9.1 × 1012 MP/year. Removed MPs tend to accumulate in the sludge that is used for agricultural purposes although it should be managed as waste properly, avoiding the transition of MPs pollutants to terrestrial ecosystems adding to the number of MPs that will inevitably end up in receiving water bodies through direct WWTP effluent discharge that was set in 5.1 × 1010 MP/year in the studied WWTP.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Esgotos/análise , Microplásticos , Plásticos/análise , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Poluentes Químicos da Água/análise , Água/análise , Monitoramento Ambiental
2.
Water Res ; 225: 119185, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209664

RESUMO

Microplastics (MPs) are emerging pollutants detected everywhere in the environment, with the potential to harm living organisms. The present study investigated the concentration, morphology, and composition of MPs, between 20 µm and 5 mm, in a drinking water treatment plant (DWTP) located close to Barcelona (Catalonia, NE Spain). The sampling included different units of the DWTP, from influent to effluent as well as sludge line. Sampling strategy, filtration, allows sampling of large volumes of water avoiding sample contamination, and during 8 h in order to increase the representativeness of MPs collected. The pre-treatment of the samples consisted of advanced oxidation with Fenton's reagent and hydrogen peroxide, followed by density separation of the particles with zinc chloride solution. Visual identification was performed with an optical and stereoscopic microscope with final Fourier-transform infrared spectroscopic (FTIR) confirmation. MPs were found in all DWTP samples, with concentrations from 4.23 ± 1.26 MPs/L to 0.075 ± 0.019 MPs/L in the influent and effluent of the plant, respectively. The overall removal efficiency of the plant was 98.3%. The most dominant morphology was fibers followed by fragments and films. Twenty-two different polymer types were identified and synthetic cellulose, polyester, polyamide, polypropylene, polyethylene, polyurethane, and polyacrylonitrile were the most common. Although MPs could be incorporated from the distribution network, MPs intake from drinking water from this DWTP was not an important route compared to fish and seafood ingestion.


Assuntos
Água Potável , Poluentes Químicos da Água , Animais , Microplásticos , Esgotos , Plásticos , Peróxido de Hidrogênio , Espanha , Águas Residuárias/química , Polipropilenos , Nylons , Poliuretanos , Poluentes Químicos da Água/análise , Polietileno , Celulose , Poliésteres , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...